Addition and subtraction

Basic to subject specific (Beck's Tiers):

+ , add, addition, more, plus make, sum, total altogether, double, near double, one more, two more... ten more... one hundred more, =, equals to, sign, is the same as, Tens, ones, partition, near multiple of 10 , tens boundary, more than, less than, fewer, difference, one more, two more... ten more... one hundred more
Subtraction, subtract, take away, difference, difference between, minus, fewer, Tens, ones, partition, Less than, one less, two less... ten less... one hundred less

More, one more, two more... ten more... one hundred more

Instructional vocabulary:

tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of... show how you...

Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd + odd = even; odd + even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
 images such as this.

Some Key Questions: What's the same? What's difference? What do you notice? What patterns can you see?
How many altogether? How many more to make...? How many more is... than...? How much more is...?
Is this true or false?
If I know that $17+2=19$, what else do I know? (e.g. $2+17=19 ; 19-17=2 ; 19-2=17 ; 190-20=170$ etc).

NC 2014:

Solve problems with addition and subtraction:
Applying their increasing knowledge of mental and written methods.
Recall and use addition and subtraction facts to 20 and 100:
Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two- digit number and tens;Two, two-digit numbers including regrouping;

Adding three one-digit numbers.
Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.
Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Mental Strategies

Children should count regularly, on and back, in steps of $2,3,5$ and 10 . Counting forwards in tens from any number should lead to adding multiples of 10.
Number lines should continue to be an important image to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting.

Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find $17+3=20,70+30=100$ They should use concrete objects such as bead strings and number lines to explore missing numbers $45+$ \qquad

27			12		
15		7			
37			23		14
15		,			
${ }^{13}$		14			
			15	?	

As well as number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used.

Children should learn to check their calculations, by using the inverse.
They should continue to see addition as both combining groups and counting on.
They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$. Children should use jottings to show their understanding.

Number bonds within ten and to ten

Practise regularly and show all facts using tens frame. Use the cherry representation and the bar model to expose the structure further. Record the addition and subtraction number sentences.

Addition and subtraction facts of numbers up to 20.

Practice regular and show all facts using tens frame. Use the cherry representation and the bar model to expose the structure further. Record the addition and subtraction number sentences.

Addition of three addends using aggregation - combining of two or more quantities (How much/many altogether? What is the total?).
'Madison has two red marbles, Charlie has three blue marbles and Asif has five yellow marbles. They have ten marbles altogether.'

Tens frames:

Part-part-part-whole representation:

The ten frames exposes the visual representation of combing numbers. The part-whole diagram should be used alongside to support abstract notation.

Adding 2 numbers to bridge ten (making ten strategy)

Introduce the idea that we can transform a sum of the two addends $7+5$ into a sum of three addends $7+3+2$, by partitioning one of the addends. Children need to be able to explain the steps using the part-part-whole cherry representation. Eg first I partition the five: three plus two is equal to 5 . The seven plus three is equal to ten ect.

Subtraction across tens boundary by subtracting through ten or subtracting from ten.

Subtraction through ten, we subtract the down to ten, and then subtract the rest of the subtrahend from ten, for example $12-4=12-2-2=8$
First

Subtraction through ten - bead bar and number line:

Model the process on a bead bar and number line, continuing to describe in full sentences. Make links between the tens frame and bead bar/ number line.

Children should have the opportunity to work through these stories/calculations using tens frame and verbalise the process using mathematical language eg 'first partition the four into two and a two. Then subtract two from twelve to get to ten. Then subtract the remaining two from the ten.

Subtraction through ten - abstract:

$$
\begin{aligned}
& 12-2=10 \\
& 10-2=8
\end{aligned}
$$

so
$12-4=8$

Model writing equations to express the two-stage process. Children develop their ability to jot down partitioning of the subtrahend and express the two steps.

Support children to develop this using examples below.
16 -(9)=

Subtraction from ten concept-bead bar representations
$15-9=6$

Subtraction as difference:

Using comparison to expose difference. Use a variety of examples to draw out a range of vocabulary for example, bigger, smaller, older, younger, more, less, fewer, heavier, lighter. Also remember to use 'less' for continuous variables and 'fewer' for discrete variables.

Discrete objects:

- There are more red cars than blue cars.
- There are fewer blue cars than red cars.

5 red cars

$$
\text { to } \mathrm{sh}
$$

As well as presenting difference using the bar model, expose difference on a number line. Also allow opportunities for children to show difference between two numbers using these representations y themselves.

Link difference to the subtraction calculation and encourage children to describe what the equation is showing, for example the difference between eight and three can be written as $8-3=5$. Unsure children are exposed to the concept that consecutive whole number have a difference of one, consecutive odd/even numbers have a difference of two.

Apply the structure of difference to compare data

Counting in tens

Teaching children that counting in groups of ten is an easier and more efficient way of counting larger amounts of items.
Teaching the concept of unitizing 1 ten

Read and write: 10 ones is 1 ten. 2 tens and 6 ones makes twenty-six.

Write 2 on the left. It means 2 tens.
Write 6 on the right. It means 6 ones.

Give opportunities for children to tie up sticks/straws ${ }^{-}$of 10 and work it out themselves using the recording and the place value chart.

2 tens and 3 ones is 23 .
$20+3=23$

0 tens makes 1 hundred
100 is written with 1 in the hundreds place and 0 s in the tens and ones places. 1 in the hundreds place stands for 1 hundred.
The 100 square. What do you notice?

Using this 100 square, ask children what they notice. Focus in the tens but some children will see it as 4 parts, which equals 25 . At 5 tens - ask children what they notice linked to the 100 square. This 100 square can be used to support children to calculate, for example $40+50=4$ tens add 5 tens $=9$ tens, which is ninety, and $70-20=7$ tens subtract 2 tens $=5$ tens, which is fifty.

Representing numbers to 100.

Children must understand the concept that 1 ten makes 10 ones. They will develop their understanding of place value with numbers up to 100 .

Children must be able to partition two-digit numbers into different combinations of tens and ones (verbal, pictures or apparatus). Expose patterns and efficient strategies.

Comparing numbers up to 100

Children need to be able to use < > = symbols to compare numbers. Eg which is greater: 63 or 38 ? Counting in ones from $0: 1,2,3,4 \ldots$..the number after is greater than the number before. Mark these numbers on a number line. Children have already learned that the number on the right is greater than the number on the left.

Answer: 63 is more than 38.

Children need to compare two, two-digit numbers. The number with the greater digit in the tens place is the greater number. If both digits in the tens place are the same, then the number with the greater digit in the ones place is greater.

Adding and subtracting tens to or from a two-digit number

Challenge 1: add these numbers. Look for patterns.

$49+10=$	$36+10=$	$10+21=$
$49+20=$	$36+20=$	$20+21=$
$49+30=$	$36+30=$	$70+21=$
Challenge 2:		
$10+67=$		
$67+20=$		
$30+67=$		

Talk about the ones and pay attention to the fact that there are no ones in 30.
Model how to record written method on w/b too alongside the dienes jottings to support children who need it.
Make sure the one are always representing the ten frame model to support calculating
Add number which look for patterns first and then challenge. For example:

$37-20=$

Adding and subtracting a one-digit number to or from a two-digit number

$25-4=$

븝

Addition 2 digit numbers:

Model how to add together 2 digit numbers using dienes and images
Add together the ones first then add the ten. Use the dienes to model

Children should use jottings of dienes to add to together the $\mathbf{2}$ digit numbers and record as above
Addition 2 digit numbers when re-grouping is required

$$
\begin{aligned}
38+25 & =63 \\
\hline 30+20 & =50 \\
8+5 & =13 \\
50+13 & =63
\end{aligned}
$$

I would calculate using this method

Subtracting a two-digit number from a two-digit number
Teach partitioning the second number, e.g
85-34 (underline the second number)
$85-30=55$
$55-4=51$
First, let's build the number using the dienes. Do I have to build the subtrahend and the
${ }_{\text {minuend? Why? Why not? }} 58-25=$? ($£$)

Tens	
	\square

$58-25=33$
$58-20=38$
$38-5=33$

There is $£$ left.

Children must use jottings to support their understanding until they are ready to move away from using the jottings alongside.
Subtracting a two-digit number from a two-digit number crossing the tens boundary

Step 1. Take away the tens.
Step 2. Exchange 1 ten for 10 ones.

Step 3. Take away the tens.

It is essential that you model using dienes to build conceptual understanding. The children must use jottings of dienes and ones to show their understanding and not just the number sentence. They can use jottings during test papers.

Summer term - after SATs and moderation children should be taught column addition

Introduced to column method/
Review learning of column addition without crossing the boundary first. Ensure you refer to the value of the digitise g. 4 ones add 3 ones is equal to 7 ones. 2 tens add five tens is equal to 7 tens.
Children should use jottings alongside to support their understanding and then move away as soon as they are secure. Make sure the columns are labelled and images are used alongside the written method.

During the same lesson move onto crossing boundaries as for the example below.

Give children opportunity to cross the hundreds boundary. E.g the example given.

