Year	Objectives	Examples	Models and Images
Rece ption	They solve problems involving problems, including doubling, halving and sharing.	Division can be introduced through halving. Children begin with mostly pictorial representations linked to real life contexts. Although not explicit in the development matters document, the sharing model is a useful way of introducing young children to fractions and calculating with fractions. I have 10 sweets. I want to share them with my friend. How many will we have each?	Linked into multiplication and division Use bar model to show representation and model using sharing.
$\begin{aligned} & \text { Year } \\ & 1 \end{aligned}$	Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	To understand the whole and part relationship using context, shapes and quantity. The relationship between a whole and the parts. A whole can be divided into many parts. Many parts can make one whole. Divide the whole into several equal - parts Divide equally.	(6) \square Say: If is the whole, then is the part of the whole. (1) (2) (3) Say: If \qquad is the whole, then \qquad is the part of the whole.

		Finding fractions of a number is linked to strategies used when sharing and grouping in division. Use the bar model that's shows concrete, pictorial abstract. Children use concrete objects and pictures to answer questions such as: What is $1 / 2$ of 12 ?	Children to record work pictorially.
Year 2	Recognise, find, name and write $\begin{aligned} & \text { fractions } \frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{1}}{4}, \frac{\mathbf{2}}{\mathbf{4}} \\ & \text { and } \frac{\mathbf{4}}{\mathbf{4}} \text { of a length, } \\ & \text { shape, set of objects } \\ & \text { or quantity. } \end{aligned}$	Refer to previous years methods - this is essential! Children use their knowledge of unit and non-unit fractions of shapes to find fractions of quantities. Unit fractions$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \ldots \text { One part of the whole. }_{\text {Numerator-- " } 1 \text { " }}^{\begin{array}{l} \text { Denominator--- } \\ \text { How many equal } \\ \text { parts. } \end{array}}$Non-unit fractions Numerator: $\frac{4}{9}$ $\frac{9}{\text { Several equal parts (coloured }}$ or circled).	

	What is half of 8 sweets? Relate the idea of finding $\frac{1}{2}$ of an amount to 'dividing by 2'. Use the bar model to show how to divide the whole equally b 2. Use understanding of multiplication and arrays to find fractions of amounts. What is $\frac{1}{4}$ of 12 ? What is $\frac{2}{4}$ of 12 ? What is $\frac{3}{4}$ of 12 ? They relate this to find fractions of a length e.g. $\frac{2}{4}$ of $1 \mathrm{~m}=$ Children need to relate finding a quarter to halving and halving again. Pupils should count in fractions up to 10, starting from any number and using the1/2 and 2/4 equivalence on the number line (Non Statutory Guidance)	 Tom needs to give one quarter of his eight cookies to his friend. What is (two, one quarters) \div of 8 cookies? $\frac{1}{4}$ of eight is \qquad What is $\frac{2}{4}$ of eight? Tom needs to give one quarter of his eight cookies to his friend. What is $\frac{1}{4}$ of 8 cookies? The whole is divided into () equal parts. $\frac{1}{4}$ of eight is \qquad A00: ${ }_{8}^{4}$ Tom needs to give one quarter of his eight cookies to his friend. What is (three, one quarters) $\frac{3}{4}$ of 8 cookies? The whole is divided into () equal parts. $\frac{1}{4}$ of eight is \qquad What is $\frac{3}{4}$ of eight? (a) $\frac{1}{2}$ of $8 \mathrm{~cm}=$ \square cm 8 cm \qquad (b) $\frac{1}{4}$ of $8 \mathrm{~cm}=$ \square cm \square						

Recognise the per cent symbol (\%) and understand that per cent relates to number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.

Finding percentages- use the bar model and the percentage bubble to see connections and relationships with different percentages.

Link the bar model to the percentage bubble. Focus on half, then half again and the relationships between 50\%, 25\% and 75\%.

The whole is divided equally into ten equal parts. So, what can we say about each part?

Each part is 10%
I say it as ten percent because I know it means one tenth of the whole.

Method needs to be recorded alongside, eg:
Find 10% of 230
$230 \div 10=23$
10% of $230=23$
Find 12% of 230 . Find 10% first, then find 1%.

100 \%

\%

