| Mathematical aspect | Mathematical themes | National Curriculum statement |
| :---: | :---: | :---: |
| Weeks 1-2 | Geometry <br> Identify perpendicular and parallel lines. Identify horizontal and vertical lines. <br> Describe the properties 2-dimensional shapes and 3-dimensional shapes Learn about types of angles. <br> Name and compare angles and use this information to help when classifying triangles and quadrilaterals. <br> Understand what makes an angle are perpendicular 'perpendicular' means two lines meet to make a right angle. <br> Use concrete materials to find and show different lines. <br> Understand that 'parallel' means two lines that never meet. <br> Understand the term 'horizontal' meaning parallel to the floor. <br> Identify the term 'vertical' meaning perpendicular to the floor. <br> Name and identify the angles, vertices and sides in a 2-D shape. <br> Describe the sides using 'perpendicular' and 'parallel' <br> Measure 2-D shape to the nearest centimetre. <br> Build 3-D shapes from their nets. <br> Identify the correct net for a 3-D shape, using terms such as 'faces', 'vertices' and 'sides'. <br> Identify the 2-D shapes on 3-D shapes <br> Explore symmetry and symmetrical figures before applying this knowledge to the completion of symmetrical figures. <br> Draw lines of symmetry on shapes and figures. | Identify pairs of perpendicular and parallel lines Identify horizontal and vertical lines Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them. Identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Recognise 3-D shapes in different orientations and describe them. <br> Identify acute and obtuse angles and compare and order angles up to two right angles by size. <br> Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes. <br> Identify lines of symmetry in 2-D shapes presented in different orientations. |


| Weeks 3-4 | Perimeter and area <br> Explore perimeter. <br> Understand perimeter as measuring the total length around a shape <br> Understand perimeter as combining the lengths of sides. <br> Calculating perimeter by adding all of the lengths together <br> Measure area by measuring surface coverage, i.e. counting squares before measuring area by using multiplication. <br> Find areas of figures that have squares and rectangles by counting and visualising. $T$ <br> Find area to figures in different orientations. | Measure the perimeter of simple 2-D shapes. To measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres Find the area of rectilinear shapes by counting squares |
| :---: | :---: | :---: |
| Weeks 5 <br> (At this stage in the year, need to decide on coverage. If you need time, number calculation and arithmetic need to be an daily theme rather than this 2 week block) | Number, calculation and arithmetic: <br> Compliments to $100(\mathrm{eg} 20+80=100,67+33=100)$ and all 2digits numbers within 100 <br> Application of appropriate mental strategies when the numbers are easy to manipulate $58+22=60+20$ <br> Using rounding to check the reasonableness of the answer <br> Understanding the columns <br> Understanding the process of where to start and how to track through the written method <br> Apply tables knowledge in the context of place value <br> eg $6 \times 7=42$ and $60 \times 7$ etc <br> Understanding the relationships between the multiplication and division statements eg $6 \times 7=42,7 \times 6=42$ and $42 \div 7=6$ <br> Facts and mental to written methods <br> Mental strategies for partitioning for multiplication ( $96 \times 6$ could be $90 \times 6$ and $6 \times 6$ ) <br> Mental strategies for rearranging for division ( $96 \div 6$ could be partitioned into $60 \div 6$ and $36 \div 6$ ) distributive law <br> Understanding multiplication as commutative <br> Appropriate methods for addition, subtraction, multiplication and division stage in the year <br> Short division method backed up by models and images (refer to calculation on policy | To add and subtract numbers mentally. <br> To estimate the answer to a calculation and use inverse operations to check answers <br> To add and subtract numbers using columnar methods To estimate the answer to a calculation and use inverse operations to check answers <br> To solve addition and subtraction problems <br> To recall and use multiplication and division facts <br> To write and calculate mathematical statements for multiplication and division, using facts and place value To recognise and use commutativity in mental calculations To use a formal written method for multiplication and division. To recognise and use commutativity in mental calculations To understand the effect of dividing a one- or two- digit number by 10 and 100 <br> To solve problems, including missing number problems, involving multiplication and division |


| Weeks 6-7 | Time <br> The structure of the clock face. <br> Understanding the position of the hands for o'clock and half past. Knowing that when the hour hand is half way between two numbers the minute hand will be in the 6 for half past. <br> Understanding the position of the hands for quarter past and quarter to. <br> Counting round the clock face in five minute intervals and then introduce the five minute interval <br> Know the number of minutes in an hour and the number of hours in a day. <br> Telling the time using 'a.m.' and 'p.m.', telling time to the minute, using analogue and digital time and telling time by using both the minute and hour hands. <br> Understand the 24 -hour clock and clocks using roman numerals. Measuring and comparing time in seconds, hours and minutes. Converting units of time and then finding a number of days in lengths of time | Tell and write the time: an analogue clock and 12-hour and 24hour clocks; an analogue clock, including using Roman numerals from I to XII. <br> Estimate and read time with increasing accuracy to the nearest minute. <br> Record and compare time in terms of seconds, minutes and hours <br> Use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight. <br> Know the number of seconds in a minute and the number of days in each month, year and leap year <br> Compare durations of events [for example to calculate the time taken by particular events or tasks]. <br> Read, write and convert time between analogue and digital 12and 24 -hour clocks. <br> Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days. |
| :---: | :---: | :---: |
| Week 8 | Statistics: <br> Use appropriate language: x axis is the horizontal axis. Y axis is the vertical axis. Ensure children understand this terminology. <br> Understand how line graphs are used to measure change over time. <br> Interpret line graphs <br> Use information collated in a table to draw a line graph. <br> Make predictions based on trends identified in data. <br> When looking at pictograms ensure that pupils understand that one picture is not always equal in value to 1. <br> Check appropriate scales to measure values. <br> Read values in between scales accurately. <br> Compare data from one bar graph with another | To interpret and present data using bar charts, pictograms and tables <br> To solve one-step and two- step questions [for example 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables To interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and line graphs <br> To solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs |

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Position and movement } \\ \text { Week } 9 \\ \text { Plotting coordinate on the x and y axis } \\ \text { To be able to read and write the notation of coordinates } \\ \text { To be able to use the language to describe a shape as being } \\ \text { translated } \\ \text { Appropriate language and vocabulary }\end{array} & \begin{array}{l}\text { To describe positions on a 2D grids as coordinates in the first } \\ \text { quadrant } \\ \text { To describe movements between positions as translations } \\ \text { To plot specified points and draw sides to complete a given } \\ \text { polygon }\end{array} \\ \hline \text { week 10 } & \text { Assessment - testbase }\end{array}\right\}$

